光学表面上激光染料膜的二次 和三次谐波的产生

。简项词当时现象能自易出版平台

印佩华 立 群 王文耀 庄大奎 罗 毅*

(中国科学院上海光机所)

提要:利用红外激光光束(λ=1.06μm)作为基波,作用到吸附在光学表面(熔 石英或 K₉ 玻璃)上的激光染料分子膜,观察到二次和三次谐波信号。

SHG and THG of laser dye molecules adsorbed on optical surface

Qiu Peihua, Li Qun, Wang Wenyao, Zhuang Dakui, Luo Yi (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: Using laser light $(\lambda = 1.06 \ \mu \text{m})$ as the fundamental wave acting on the monolayer of the laser dye adsorbed by the smooth surface of the fused quatz or K₉ glass, the SH and TH signals from different kinds of dye molecules are observed.

通常总是利用强激光与各种非线性晶体 相互作用来获得二次、三次或更高阶的谐波。 但对于光学或金属(光滑或粗糙)表面上吸附 的分子或单层分子膜的非线性谐波效应注意 得很少。本文介绍我们利用激光泵浦吸附分 子的二次和三次谐波的理论和实验结果。

理论估计

一般来说,很薄的分子层的谐波效应是 很小的,但吸附在基板上的分子 膜 层 则 不 同。由于吸附分子与基板分子之间的相互作 用,改变了表面分子的性质,使得在激光作 用下产生的谐波或 Raman 信号比通常情况 下要增强 10³~10⁴倍,甚至更高。众所周知, 在电偶极近似情况下,具有反演对称中心的 晶体或多原子分子,由于非线性极化率χ⁽³⁾ 为零,不能产生二次谐波(当然电四极矩和磁 偶极矩对二次谐波也是有贡献的,但它们相 对于电偶极矩来说非常小)。但是表面吸附分 子与基板材料分子之间的相互作用(忽略吸 附分子之间的相互作用)会使吸附分子的电 子组态发生变化,从而破坏了整体分子的反 演对称性;或者分子本身就是极性分子,相互 作用使吸附分子在基板表面上按一定取向排

* 华中工学院学生。

收稿日期: 1985年6月17日。

列,也使总的 x⁽²⁾不为零。所以可以说,吸附 的分子膜在激光作用下一般地是可以产生二 次谐波和三次谐波的。

材料的谐波效应,可用激光和材料的非 线性耦合波方程来描述^[1]。对耦合波方程求 解,我们获得:

 $I_2 = \frac{512\pi^3 \omega_1^2}{n_1^2 \cdot n_2} | \chi^{(2)} |^2 \cdot \left(\frac{\sin L \cdot \Delta k/2}{L \cdot \Delta k/2} \right)^2 \cdot I_1^2$ (1) 其中 I_1 和 I_2 分别为基波和二次谐波的单位 面积上的功率; ω_1 为基波频率, L为分子膜 的厚度, $\chi^{(2)}$ 为吸附分子膜单位面积上的二 阶极化率; Δk 为基频光波矢 k_1 和二次谐波 波矢 k_2 之差, 即 $\Delta k = 2k_1 - k_2$ 。基波到二次 谐波的转换效率 η 为:

$$\eta_{s} = \frac{I_{2}}{I_{1}} \approx \frac{512\pi^{3}\omega_{1}^{2}}{O^{3}} |\vec{\chi}^{(2)}|^{2} \\ \times \left(\frac{\sin L \cdot \Delta k/2}{L \cdot \Delta k/2}\right)^{2} \cdot I_{1}$$
(2)

从(2)式中看出,在给定的基波功率 I_1 条件下,对于固定的吸附分子来说,影响倍频效率 η 的仅是相位匹配因子 $\left(\frac{\sin L \cdot \Delta k/2}{L \cdot \Delta k/2}\right)^2$ 。因为光学表面上吸附分子膜的厚度 L 很小,故

$$\lim_{L \to 0} \left(\frac{\sin L \cdot \Delta k/2}{L \cdot \Delta k/2} \right) = 1$$
 (3)

由此我们获得十分有意义的结论: 基板表面 吸附的单层分子膜产生二次谐波时,总是相 位匹配的,不存在相位失配问题。吸附单层 分子膜的二次谐波转换效率总能达到它本身 所能达到的最大值。

同样,对于分子膜的三次谐波产生,亦可 得到相似的结果^[2]:

$$I_{2} \simeq \frac{9 \cdot 2^{8} \cdot \pi^{4} \cdot \omega_{1}^{2}}{O^{4}} |\tilde{\chi}^{(3)}|^{2} \left(\frac{\sin L \cdot \Delta k/2}{L \cdot \Delta k/2}\right)^{3} \cdot I_{1}^{3}$$

$$\tag{4}$$

其中基波和三次谐波波矢满足 $4k = 3k_1 - k_3$, 而 $\tilde{\chi}^{(3)}$ 为吸附分子膜的单位面积上的三阶极 化率。转换效率 η_T 为:

$$\eta_{T} = \frac{9 \cdot 2^{8} \cdot \pi^{4} \omega_{1}^{2}}{O^{4}} |\tilde{\varkappa}^{(3)}|^{2} \left(\frac{\sin L \cdot \Delta k/2}{L\Delta k/2}\right)^{2} \cdot I_{1}^{2}$$
(5)

分子膜也是自动实现相位匹配的。

实验与结果讨论

实验裝置示于图1中。激光器输出波长 为1.06 μ m 的激光光束,经 F_1 滤光片将比 波长1.06 μ m 短的氙灯光完全滤除。分束 器 BS 将光束分成两束,弱的光束直接进入 强流管,产生的电脉冲用来触发示波器;强的 一束经透镜和直角棱镜适度地会聚到样品基 板上。样品基板是由熔石英或 K₉ 玻璃板 制 成,两个面皆为抛光面。吸附分子膜就做在 基板面向单色仪那个面上。光束再向前传播 到截止滤光片 F_2 , F_2 将基 波(1.06 μ m)滤 掉,而让谐波光(λ =0.53 μ m和 λ =0.35 μ m) 通过。谐波光通过光栅单色光计后,用光电 倍增管接收,以示波器显示。

图1 实验装置

实验观察到 Rh6G, Rh640, DASPI 和 PIC (N, N'-dimethyl-pseudoisocyanine chlorid)等激光染料和有机分子的二次谐波 和三次谐波信号。我们有意将基板上的吸附 分子膜清除掉,二次和三次谐波信号即刻消 失。

图 2 上和下分别是基 板 上 DASPI 染料 分子膜的二次和三次谐波的示波器信号。

图 3 中(上)和(下)分别为 Rh6G、Rh640、 DASPI 和 PIC 分子膜的二次谐波和三次谐 波信号强度随波长变化的关系曲线。从图 3(上)可知,几种样品分子的二次谐波信号 的强度不同,从强到弱的次序为 DASPI、 Rh640、Rh6G 和 PIC。其信号频率宽度均 在 2.5~3.0nm 范围内。从图 3(下)中看出,

各种分子膜的三次谐波信号强度以Rh640为 最大,其它样品几乎都一般大小。其频宽比 二次谐波略有差异。图3中曲线的各点都是 20次测量数据的平均值。 垂直短线表示测 量的均方根误差。测量表明,二次谐波和三 次谐波光束的方向性与基波光束相同。

为了验证吸附表面上染料分子膜的非线 性增强效应。我们利用 2 mm 厚的石英或 K。 玻璃盒,将样品溶解于乙醇中,令基波激光通 过染料样品,这时观察不到二次谐波和三次 谐波信号。其原因一方面是由于溶液本身对 二次谐波和三次谐波有强吸收,即使产生谐 波信号也被自吸收掉。二是溶剂的存在使分 子与表面的作用变弱,从而使分子在样品盒 壁上的排列不是有序的。

分子膜无论是在基板的那个表面上,都 可观察到谐波信号。不仅在基板的透射方向 上,而且在反射方向上都有谐波信号。

利用线偏振基波光束,我们已定出分子 在吸附表面上的取向。实验上可以粗略估计 吸附分子单位面积上的二阶极化率 $\overline{\chi}^{(3)}$ 和 三阶极化率 $\overline{\chi}^{(3)}$ 的值。

当所用的基波光强逐渐增强时,谐波信 号也随之增强。但当基波功率过高时,二次

谐波和三次谐波信号反而消失了。这点的解释可能是由于基波激光被吸收,在基板上产 生热量,使基板表面产生瞬时消吸附,或者在 强光作用下,分子相变所致。若确定其真实 机制尚需进一步设计实验。

参考文献

- [1] F. Eernike, J. E. Midwinter; Npplied Nonlinear Optics, John Wiley & Sons New York/Syobney/ Toronto/London, 1980, p. 43.
- [2] P. D. Marker, R. W. Terhune; Phys. Rev., 1965, 137, No. 1A-3A, A801.

. 477 .